
The topology of mental states.
Combining data science and graph theory to reveal neural networks

for cognitive functions.

Andrea Insabato

Universitat Pompeu Fabra
Theoretical and Computational Neuroscience

Center for Brain and Cognition
Roc Boronat, 138

08018 Barcelona, Spain,

Columbia University
Italian Academy for Advanced Studies

Center for Theoretical Neuroscience
1161 Amsterdam Ave.

New York NY 10027, USA

October 30, 2017



Abstract

In this article we give a general introduction to the study of cognitive functions and

dysfunctions from the perspective of data science and network science.

We will use functional magnetic resonance imaging data since it is a privileged method

to observe whole brain activity in a non-invasive way.

The analysis of specific brain networks will provide a quantitative method to investigate

the neural correlates of cognition and at the same time can be used to develop new

diagnostic and therapeutic procedures for individual neuropsychiatric patients.

The extraction of specific networks has to face the problem of a mixture of variability

in brain activity. While extracting the network, for example, related to a given pathology,

we want to assess the variability in this network between individual patients and filter

out the variability due to repeated sampling. In order to face this problem we propose to

simultaneously classify subjects and conditions (behavioral or pathologic).

We base our classification pipeline on a network model of brain activity that enable us

to extract the effective connectivity between brain regions. In contrast to recent attempts

to classify individuals based on functional connectivity, our approach provides more stable

and reliable estimation of connectivity to the purpose of the classification.

Here we show that our method is able to classify a large number of subjects using

few recording sessions and at the same time the behavioral condition of the sessions

(resting or movie viewing). In addition we extract the networks that underlie the two

classifications: The subject network is almost fully connected with several central nodes,

located in frontal and cingulate regions; in comparison, the condition network is segregated

into small isolated components.

Finally we discuss some refinements of our pipeline that are needed for small sampling

size cases.
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1 Introduction

GLOSSARY

This article is meant to be a general introduction to the study of cognitive
functions and dysfunctions from the perspective of data science and network
science. While the idea of the brain as the physical substrate of mental activity
is quite old and more or less well established and the idea of the brain as

a network of interconnected units is, although not as old,

fMRI: the activity of neu-

rons is visualized through

the induced magnetic field.

Current spatial resolution

of fMRI is in the order

of mm, allowing to study

large ensembles of neurons

such as hypercolumns.

probably more

widespread and shared, the study of whole brain networks underlying cognitive
functions and brain disorders is only becoming possible very recently thanks to
the acquisition of huge amount of data (often referred to as “big data”) and to
the development of adequate quantitative methods to analyze such data. The
specific focus adopted here will be on estimating connectivity from functional
magnetic resonance imaging (fMRI) data as a privileged method to observe
whole brain activity in a non-invasive way. However the extension to other
type of data, such as calcium imaging, is straightforward.

Relevance.

BOLD: The activity

of the brain requires

oxygen. Oxygenated blood

has different magnetic

properties compared to

de-oxygenated blood.

These differences can be

recorded by an fMRI

scanner (the so called

BOLD signal), thereby

providing a proxy for the

level of activity of each

recorded brain region.

At least two research areas make our study of the utmost

importance. On one side it will provide a quantitative method to investigate
the neural correlates of cognition at the level of whole brain networks, hence
advancing our understanding of cognitive functions. On the other, it will foster
the development of individualized medicine for neuropsychiatric diseases using
imaging techniques, an idea that has been recently put forward [1].

State-of-the-art. Blood-oxygen-level dependent (BOLD) signals in fMRI
have been used for more than two decades to observe human brain activity
and relate it to functions [2]. Even at rest, the brain exhibits patterns of
correlated activity between distant areas [3]. The functional connectivity
(FC) measures the statistical dependencies between the BOLD activities of
brain regions, which has then been studied for subjects performing tasks and
compared with the resting state. Following fundamental discoveries about brain
functions, fMRI has been increasingly used to complement clinical diagnostic for
neuropathologies [4]. Resting-state fMRI has also been found to be informative
about neuropsychiatric disorders [5]: alterations in FC correlate with and can

predict the clinical scores of several diseases [6, 7].

FC: Pattern of statistical

association between brain

areas. While structural

connectivity represents the

physical connections (the

fibers) between areas, FC

reflects the use of those

physical connections when

the brain is active. While

structural connectivity re-

mains the same even when

the brain is dead, FC

changes depending on the

type of activity.

Recent studies have focused on the reliability of these FC measures recorded
from the same subject over successive sessions [8, 9]. Consistent differences
between subjects (with individual stability) allow subject identification using
recorded FC as a fingerprint [10]. Moreover, this subject specificity may even
be enhanced in task-evoked activity [11]. A recent prospective study about
the evolution of psychiatric disorders emphasized individual specificities in the
FC stabilization during childhood (irrespective of the disease) [12], whereas
traditional group-averaging aims to remove the individual differences to obtain
task-specific [13] or pathology-specific [14] signatures.

Anatomy of the problem. We should now dissect the general problem
prospected above (the study of whole brain networks underlying cognitive
dis-functions) into different subproblems. As we have seen, the mixture of
session-to-session, subject-specific and condition-related variability in FC is a
crucial issue in particular when only a few sessions per subject can be recorded,
such as for clinical diagnostic. So the original problem can be translated into
distinguishing these different sources of variability. In particular classifying
subjects and conditions 1 would be a practical solution to this problem, since

1We use the neutral word “condition” to indicate the condition a subject might be in, be
it mental, e.g. dreaming, counting, remembering, or a pathological/healthy condition.

4



classifying both we would be filtering out the remaining session-to-session
variability.

Approach towards a solution.

Classification: In

machine-learning is the

task of predicting the

category a new object

belongs to, given previous

examples of different

objects and a categorical

scheme. As an example,

the spam filter of your

email uses a classifier that

categorizes incoming email

in spam and non-spam.

As already mentioned here we will take

a whole brain approach. Distributed signatures in FC across the whole brain
have been observed in memory tasks [15] or when the subject experiences
psychological pain [16]. Moreover, the etiology of many mental disorders is
unknown: they are suspected to arise from network dysfunction, as reported for
large-scale FC alterations in patients with schizophrenia [17]. These examples
strongly point in favor of whole-brain approaches to study high-level cognition
and brain diseases; in contrast, focusing on a few cortical areas only to test
hypotheses may not capture sufficient information and network effects. Such
whole-brain approaches typically involve a large number of parameters to
estimate, which may impair the robustness. One aim of the present study is to
provide a practical answer to this trade-off dilemma.

The idea underlying the study of FC in the broad sense lies in that it
reflects how brain areas dynamically bind to exchange and process information

[18, 19].

EC: Although not a for-

mally defined concept, it

refers to the real connec-

tions employed by a net-

work during its activity. In

practice usually the param-

eters of a network model

are adjusted in order to re-

produce experimental data

and the connectivity of the

model is used as an estima-

tion of EC.

To move beyond a phenomenological description of FC, our method

relies on a mathematical network model of BOLD time series [20] and allow
to FC to be decomposed into changes in network connectivity, called effective
connectivity (EC) and local fluctuating activity. As with FC, a crucial issue
for EC is whether the estimated model parameters are reliable across several
sessions for the same subject [21], which determines whether they can predict
the subjects’ identities in practice [22].

We will first develop the method for simultaneous subject and condition
identification for simple conditions. In particular we will use a dataset where
subjects can be in two conditions each during 4 minutes: resting or viewing a
movie. We will then refine the method for its application to diverse conditions
such as healthy/pathological states or short duration mental states, such as
memory retrieval, visual exploration, working memory, decision-making, etc.
In particular we expect an increased complexity from short duration states.

Summarizing, the steps towards the accomplishment of our objective are:

1. Reliably extract whole brain EC;

2. Identify individuals;

3. Identify conditions;

4. Extract subnetworks that characterize individuals and conditions;

5. Refine the method for short duration states;

2 A new method for the extraction of net-

works related to subjective identity and con-

dition

The vast majority of the results presented here have been presented in a recent
technical report [23]. Here we will avoid a detailed description of methods (all
necessary technical information will be presented together with the results) and

5



Dataset name Acquisition Number of subjects Sessions per subject Session duration

Dataset A1 Day2day project 6 40-50 5 minutes
Dataset A2 Day2day project 50 1 5 minutes
Dataset B CoRR 30 10 10 minutes
Dataset C [24, 4] 19 3 resting; 2 movie 10 minutes

Table 1: Datasets used in the study. Dataset A (A1+A2) was used to test the
robustness of subject identification in session-to-session variability. Dataset B
was used to test the generalization capability of the identification procedure for
a larger number of subjects. Dataset C was used to extract both individualized
and behavioral signatures.

we refer the reader to the technical report for a full description the procedures.

PCC: Measures the

strength of linear statis-

tical association between

two variables. In the case

where variable x increases

and variable y increases

PCC will be high and

positive (with a maximum

of 1), when x increases and

y decreases PCC will be

negative (with a minimum

of -1). When the variables

are not associated PCC

will be 0 or very small.

2.1 fMRI data

In this study we used fMRI data from the three datasets, where several subjects
underwent multiple sessions of fMRI recording, as described in Table 1. The
processing of the data is represented in fig.1A. For each individual session
data were corrected for artifacts and parcelated in regions of interest (ROIs).
The mean BOLD signal in each ROI was extracted and classical functional
connectivity (corrFC) was calculated using the pairwise Pearson correlation
coefficient (PCC) between the time courses of BOLD in each ROI. Finally,
as show in Fig.1A, we obtain an NN symmetric matrix for each recorded
session (N=116 for Datasets A and B, N=66 for Dataset C), where each
element at row i and column j of the matrix represents the PCC between the
ith ROI and the jth ROI. The matrix is symmetric since PCC is symmetric

(PCC(i, j) = PCC(j, i)).

Mathematical model: A

set of differential equations

that describe the evolution

in time of some variables,

possibly coupled, and their

relationship to other static

variables. Static variables

can be determined by em-

pirical measures or un-

known, i.e. their value can

be freely set.

2.2 Network model and effective connectivity extrac-

tion

The model is a network where each element, corresponding to each ROI, is is
governed by an Ornestein-Uhlenbeck (OU) equation. To the aim of extracting
the EC we used the whole-brain dynamic model [25] depicted in Figure 1B.
Each ROI receives input from other ROIs according to the connectivity scheme
defined by the EC, which is estimated from the data. The model can be

simulated and the FC of the model

Simulation: The solution

of the differential equations

of a model that gives the

evolution in time of the

variables of interest. Since

(at least some) variables

represent measurable quan-

tities, the process simu-

lates the observable world.

can be compared to that of empirical data.

In the model, the global pattern of FC arises from the local variability Σi that
propagates via the network connections ECij (from j to i). To fit each fMRI
session, all relevant ECij and Σi parameters are iteratively tuned such that the
model FC best reproduces the empirical counterpart. A detailed description of
the model and the maximum-likelihood estimation procedure is provided in
[25].
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Figure 1: After a standard pre-processing pipeline, a parcellation covering the
whole-brain is applied to extract BOLD time series with each color representing
an anatomical subsystem of several ROIs. B) Whole-brain network model.
The local fluctuating activity propagates via the recurrent EC to generate the
correlation patterns at the network level. The fitting procedure iteratively
tunes EC and Σ such that the model best reproduces the empirical FC. C)
Each corrFC matrix is symmetric and has all diagonal elements equal to 1, so
that only 6670 independent links are retained for classification (lower triangle).
Likewise, the EC matrix has 4056 non-zero elements that are used in the
classification (density of 30%).
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2.3 Subject identification

Fitting: Or “parameter

estimation”, is the adjust-

ment of free variables of a

model in order to make the

simulation as close to the

empirical data as possible.

Robust subject identification for ∼100 subjects was pioneered by a recent
publication [11], relying on a k-nearest-neighbor (kNN) classifier with k=1 and
PCC as metric. In contrast with previous studies using 1NN [11, 21, 12], our
method relies on a multinomial logistic regression (MLR) classifier, a classical
tool in machine learning. MLR uses a linear model to predict the probability
that an input sample belongs to a class (subject here).

Inference: When a model

is fitted to experimental

data (i.e. it can reproduce

them to a certain extent),

the value of free parame-

ters can be inferred, e.g. in

a network model the con-

nectivity is typically not

measurable but can be in-

ferred once the model has

been fitted.

In classification algorithms the problem of overfitting describes the situation
where the algorithm performs very well with the data it is trained with, but fails
to generalize to new samples. Due to the high dimensionality of the connectivity
measures, it is essential to control for overfitting with an appropriate training
and test procedure. Our train-test procedure and the use of large test-retest
datasets unlike previous studies [11, 21, 26] aims to provide a trustworthy
characterization of the quality of the classifiers. Figure 2A describes the train-
test procedure for the identification of subjects: 1) fMRI sessions (EC in the
figure) are randomly split in training and test datasets; 2) after preprocessing
(orange arrows) involving within-session z-score followed or not by PCA, the
classifier is optimized as illustrated for the MLR with boundaries that best
predict the training dataset; 3) test set is used to verify the generalization

capability of the classifier (blue arrows), by measuring to

OU: Is a mathematical

model that describes the

velocity of a Brownian mo-

tion, i.e. the motion of

a random moving particle.

In practice, the dynamic

of the process tends to-

ward an equilibrium but

is otherwise noisy given

the random fluctuations of

its input. When multi-

ple OU processes are con-

nected complex dynamics

can emerge.

which extent the

classifier boundaries, estimated with the train set, correctly classify single
sessions from the test set.

We first used Dataset A1 and increased the number of training sessions per
subject from 1 to 40 to evaluate how many training sessions are necessary for
satisfactory accuracy. As shown in Figure 3B, EC (in red) outperformed corrFC
(in blue) by more than one standard deviation (shaded area around the curve),
for both MLR and 1NN. Moreover, almost perfect classification was reached
with MLR for only 5 training sessions, whereas 10-15 were necessary for 1NN.
This is important when only a few training sessions per subject are available,
as expected with clinical applications. Figure 3C displays the classification
accuracy for Dataset B, used to verify the robustness with respect to the number
of subjects to be classified. We trained the classifiers with 1 session per subject
and evaluated the performance varying the number of subjects from 2 to 30
(test set comprised the remaining 9 sessions per subject). Again, EC is more
robust than corrFC: while performance with corrFC rapidly deteriorates as the
number of subjects is increased, classification using EC is barely affected by
the number of subjects. This is our core technical result: EC and MLR largely

outperform corrFC and 1NN, respectively.

z-score: Transformation

of a distribution that al-

lows to highlight the fluc-

tuations of data around the

mean.

2.4 Network of subject identification

An important advantage of the MLR over kNN is its efficiency in characterizing
the links that contribute to the classification. We used recursive feature elimina-
tion (RFE) to rank the links according to their weight in the classification and
then chose the lowest number of links that achieved the maximum classification

performance.

PCA: Technique that al-

lows to reduce the dimen-

sionality of a dataset by ro-

tating and projecting the

data in a new space.

The resulting support network for dataset A1 had 18 links, com-

pared to 44 links for dataset B. In both cases, subject identification using only
those links achieved perfect accuracy. The two support networks are shown
in Figure 3A in the same matrix: remarkably, the networks are very sparse
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Figure 2: Subject identification using EC and FC. A) Classification pipeline
used to assess the generalization of performance. The full set of connectivity
measures (here EC) over all fMRI sessions was split into two groups: a train
set and a test set. We use z-scores calculated over the elements of each session
matrix. We trained the classifier with or without previously applying PCA
and evaluated the classification accuracy on the test set. B) Performance of
multinomial logistic regression (MLR, left panel) and 1-nearest-neighbor (1NN,
right panel) classifiers when increasing the number of sessions per subject used
as training set with Dataset A1. The mean (solid curve) and standard deviation
(colored area) were calculated for 100 repetitions with cross-validation. C)
Same as B when varying the number of subjects using Dataset B, using a single
training session per subject (leaving 9 sessions per subject as test test).
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and non-uniformly distributed across the whole brain.

Network: A set of nodes

connected by links. As

shown below, network can

be represented with dots

and arrows or in matrix

form, where each element

of the matrix correspond to

one link and its value is 1

if the link exists or 0 if it

doesn’t.

This is the signature of

the most subject-discriminative ROIs: frontal and cingulate cortices, as well as
the temporal and occipital regions, seem to play a major role here. It is worth
noting that the adjacency matrix is not symmetric, which implies different roles
for nodes as receivers (especially frontal ROIs) or senders (cingulate).

Figure 3: Networks that support subject identification. A) Extracted links that
contribute to the classification with both datasets, obtained using recursive
feature elimination (RFE). The ROIs are grouped in anatomical pools. B)
Overlap between the two signatures for Datasets A1 and B as a function
of selected links. The curve represents the amount of common links in the
data. Shaded areas represent different quantiles of the surrogate distribution
of common links under the null-hypothesis of random rankings. The color of
the curve indicates the probability of the corresponding amount of common
links under the null-hypothesis (here p-value ¡ 0.001 when considering more
than 1% of the total links, namely 40 links).

Hypothesis testing: To

test a hypothesis, the oppo-

site hypothesis, called null-

hypothesis, is formulated,

encompassing all possible

cases but the one under

test. The probability of

a real measurement under

the null-hypothesis is calcu-

lated and if it is very small

(usually < 0.05) the null-

hypothesis is rejected.

The sparsity of the signature in Figure 3A hides the fact that the rankings
for Datasets A1 and B are close (PCC=0.59, p-value¡¡10-50), indicating that
similar neural networks characterize individuals in two disjoint sets of subjects;
see also Figure 4 that illustrates the correspondence at the level of anatomical
groups. To further measure the overlap between these networks, we selected
the subset of links with the highest ranking for each dataset and computed the
number of common links. Figure 3E shows that the proportion of common links
exceeds by far its expectation under the hypothesis of random rankings (shaded
gray area). This indicates a good agreement between the support networks
from the two datasets even at the single-link level.

2.5 Condition identification and related network

Finally, we used Dataset C to extract a signature for the subject identity
and another for the behavioral condition. This is schematically depicted in
Figure 5A, with three fictive dimensions: the information about subject identity
corresponds to the x-axis and information about the condition to the z-axis; the
session-to-session variability, that should be ignored, spreads along the y-axis.
In this idealized low-dimensional scenario, it is possible to classify a session
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Figure 4: Correspondence of links at the level of subsystems. Number of links
in each subsystem is represented by color for the two datasets A1 and B. The
number of links for each subsystem is very similar between the two datasets.

with respect to both subjects and conditions using different planes of the data.
In the high dimensional case different hyperplanes would be used, in practice
different sets of links support the two classifications. Using MLR and EC, we
achieved very high performance (accuracy >90%) for subject identification and
perfect classification for the condition.

We then sought the smallest subsets of links that achieved the maximum
performance of each classification using RFE (Figure 5B), as done before. Both
support networks were again very sparse and distributed across the brain, as
can be seen in their adjacency matrix (Figure 5C). More links are necessary
to identify the subjects (57) than the behavioral conditions (13), indicating a
higher complexity for the former.

Despite a (small) overlap of links between two networks, links relevant
for subjects’ identity and behavioral condition belong to almost disjoint sets.
In order to prove this point we used RFE to rank the links according to
their contribution to the classification, as we did before for datasets A1 and
B. We computed the number of common links for the subject and condition
identifications, which fell within the expected values for the null hypothesis
(Figure 5D). Thus the overlap at the level of individual links is not any larger
than that expected by chance.

Similar to Datasets A1 and B, subject identification of Dataset C largely
concerns the frontal and cingulate systems. Condition identification is also
supported by occipital and temporal cortices, which are expected to have
the strongest activity modulations during movie viewing. The top panels in
Figures 6A and B represent the two support networks such that the directed
nature of links can be appreciated. Apart from two small components, the
subject network appears almost fully connected with several central nodes
(hubs, indicated by their large size), located in frontal and cingulate regions. In
comparison, the condition network is segregated into small isolated components.
The bottom plots in Figure 5 show the lateralization of the support links,
stressing the asymmetries between the two hemispheres: most of the important
links are ipsilateral (i.e., within the same hemisphere) and many belong to the
left hemisphere for the subject network, whereas they are mainly contralateral
for the condition network.
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Figure 5: Twofold discrimination between subjects and conditions using EC. A)
Idealized scheme of the twofold classification where each session (blue dots) is
projected onto two planes, one for subjects (green) and one for conditions (red).
In each plane, classification can be performed efficiently. Depending on the
orthogonality of the subspaces, the two signatures have more or less overlap. B)
Performance of the classification for 19 subjects and 2 conditions using Dataset
C as a function of number of links. C) Signatures of the most discriminative EC
links for the twofold classification: 54 links for subject classification in brown,
10 for condition classification in blue, 3 common links in red. D) Proportion of
common links between the subject and condition signatures as a function of
selected links. Color coding is the same as in Figure 4B.
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Figure 6: Support networks of subject and condition classification. A) The
top graph plot represents the 57 most discriminative EC links supporting
the classification of subjects (same as in Figure 5C). The size of each node
represents its centrality in the extracted network (how much connected it
is). The most central regions are located mainly in the frontal and cingulate
cortices. The bottom circular plot shows the asymmetry and lateralization of
the network, with more links located in the left hemisphere. Links that are
inside the circle correspond to contralateral connections, while links outside the
circle correspond to ipsilateral connections. B) Similar graph and circular plots
as A for the 13 links supporting the classification between the two conditions.
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3 Refinements

We presented a reliable method to classify simultaneously subjects and condi-
tions and to extract the networks underlying these classifications. To the aim
of applying this method to the study of different cognitive functions and to the
clinical domain some refinements are needed.

The typical timespan of cognitive tasks is usually less than one minute (even
few seconds for very stereotyped perceptual tasks). Our method is calibrated for
fMRI sessions of few minutes. Even if experimental manipulations could provide
tasks with longer time scales, an improvement of the method is necessary to
allow the use of very short recording sessions. The main limitation of the
method in this respect is related to the estimation of EC. Indeed the estimation
procedure relies on the calculation of the correlation matrix. However when
the number of ROIs is in the same order of the number of time points the
correlation matrix will be very noisy (not to mention the case when there
are more ROIs than time points, for which the correlation matrix becomes
singular) and, as a consequence not reliable for the identification of subjects
and conditions. Regularization is usually the solution to this type of problems,
i.e. the pruning of the number of ROIs in this case. Another approach, the
one that we are currently following, is that of a Bayesian estimation of the EC.
The Bayesian setting allows the use of a prior probability on the EC that acts
as a regularizer and allows a more robust estimation even when the number of
time points is limited. The Bayesian approach allows also the estimation of
the probability distribution of all parameters, through the so called Bayesian
inference. This would allow in turn to test if a given connection exist or not
thereby providing a more reliable estimation.

The clinical domain might also require some adjustments to the pipeline.
We tested our method with behavioral conditions but the noise distribution in
clinical conditions might be different. The use of PCA, maybe with a small
number of principal components, should be evaluated in this case. In addition
the use of non-linear classifiers could be beneficial and will be evaluated for
each dataset.
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