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Abstract:
The problem of how to manage uncertainties when modeling or designing an engineering structure is briefly 

addressed here. Uncertainties may be relevant in the case of real structures, due to intrinsic variability of mechanical 
and physical properties as well as to the lack of knowledge when information are scarce and/or subject to some errors, 
for instance related to the test procedure. It is shown that the two mentioned sources of uncertainties must be treated 
in different ways, being the first unavoidable, and the second dependent on the experimental procedure adopted by the 
experimentalist/analyst. 

Different kinds of uncertainties should be then treated in different ways. The use of probabilistic tools in the first 
case and fuzzy number methods for the latter is studied in the first example, concerning the estimate of the strength 
of the concrete from a number of compression tests. The second problem addressed here concerns the identification 
procedure of the mechanical properties of a simple structure from dynamic test results. Also in this case, uncertainties 
can be due to the intrinsic variability of the properties to be identified, but also to the errors introduced in the adopted 
experimental procedure.

Some ideas of the next steps in the research will end the paper.
 

1. INTRODUCTION 
As all the sectors of engineering, structural engineering activities are devoted to different objectives, 

depending on the context and the answers the technician or the scientist is required to give. Hence, very 
different methodologies can be used to address problems that, for the point of view of a pure scientist, 
concern the same “object” (a material, a prototype, a real full-size structure, etc).

Consider the general case of a given structure subject to a given action (a loading, an ambient action, 
etc.). Both structure and loading are never known exactly, but they are affected by some intrinsic uncertainty 
and lack of knowledge (see the following), which must be taken into account. These uncertainties will 
be smaller in the case of a laboratory test and of course much larger in the case of in-situ tests on real 
structures. 

The scopes of engineering activities can then be roughly divided into two categories:
1. a) To predict the behavior of the structure under “known” conditions (e.g. laboratory tests) or, 

alternatively, b) under “partially known” conditions (e.g. in-situ tests). 
2. To design a structure (materials, shape, etc), either a single prototype or an in-series product, by 

prescribing its safety margin (with respect to some “design actions”, such as loads, etc) be greater 
than a minimum value prescribed by Codes or Guidelines.

The second problem (n. 2) is the typical problem addressed by an engineering designer. Problem n. 
1a) occurs instead when a new material or prototype is tested in order to known its behavior as better as 
possible before its use in practice. Problem n. 1b) concerns  the in-situ testing of an existing structure, for 
instance where its behavior is checked through testing and compared with the prediction of a numerical/
theoretical model in order to verify, for instance, if some damages or malfunctioning are occurred after the 
previous inspection.

In all the cases, the problem of how to address the presence of uncertainties, such as intrinsic material 
variabilities and lack of knowledge is very important. Material properties are known with some uncertainties. 
For instance, in the design process (problem n. 2) the structure still does not exist. Moreover, the loadings, 
which are usually well-known in the controlled conditions of a laboratory test, can be known only up to 
a given level of knowledge in the case of in-situ tests (problem n. 1b). Moreover, the material properties 
usually vary over the structure, but in models and calculation the engineer typically assumes constant 
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values. Also the numerical models we formulate are always based on simplifying assumptions with respect to 
the structure geometry, the adopted material laws, the interactions with other structures or the ground.

The present paper wants to give an overview of the problems concerning the presence of uncertainties 
in structural engineering problems, and the different ways to face them, in implicit or explicit ways. 

It is shown that intrinsic variability of the material in a structure should be treated differently from the 
uncertainty due to the lack of knowledge when a restricted number of tests is performed. In the first case, 
probabilistic methods can be safely adopted, whereas the lack of knowledge can be better modeled with 
other tools, such as fuzzy numbers. 

The future steps of the research will be briefly described at the end of the paper. 
 

2. UNCERTAINTIES IN MATERIAL PROPERTIES
Material properties can be affected by uncertainties for different reasons. Uncertainties can be roughly 
divided into: 1) intrinsic variability of the material and 2) lack of knowledge due to insufficient tests data.
First of all, there is an intrinsic scattering related with the internal meso- and micro-structure of the material. 
It is smaller for metallic materials (e.g. steel) and greater for brittle materials (e.g. concrete). For concrete, 
material variation can be also due to casting process, curing procedures and ambient conditions, which may 
cause different concrete strength values in various parts of the structure even if starting from the same mix-
design of the basic concrete components (water, cement, aggregates, additives). Lack of knowledge is due 
to the insufficient number of tests performed to assess the concrete strength, for instance in the case of a 
real existing structure.
Variability of the material strength is classically taken into account by means of a probabilistic representation. 
See for instance the probability distribution of the strength of the concrete cast for the realization of a tunnel 
in Trento, Italy, in ‘90s. The realization lasted three years, and about 5000 concrete samples were subject to 
testing according to the quality control procedure. Fig. 1a shows the probability distribution (red histogram) 
of the data, compared with the normal and the log-normal distributions obtained by calculating mean and 
variance from the whole set of data available. It is shown that the log-normal distribution gives a better 
prediction of the actual data set distribution (a well-established result confirmed by several studies). The 
difference is quite significant especially for low strength values, the most important ones in quality control, 
where a given value of the 0.05 percent fractile must be prescribed1. 
Apart from the differences concerning the kind of representation adopted, the dispersion of the results is due 
to intrinsic variability of the material, because the number of available data is very large.
 

Fig.1a: Distribution of concrete strength from a 5000 data set, 
and approximation with normal and log-normal distributions (in 
daN/cm2).

Fig.1b: Distribution of concrete strength from a 5000 data set, 
compared with approximations obtained using only 10 or 7 data, 
taken randomly from the data set (in daN/cm2).

Consider now the case only few experimental data are available, selected randomly from the complete data 
set. Fig. 1b shows the probability density functions obtained by calculating mean and standard deviation 
using two different sets of data, that is 10 data (two extractions) or, alternatively, 7 data only. It is clearly 

1 The k (lower) fractile of a probability distribution is defined as the value xk of the variable x whose probability of being x<xk is equal to 
k. For design purposes, typically the 5% fractile is used to define the material strength. The k-th fractile can be obtained be constructing 
the Cumulative Distribution Function (CDF), and finding the value of x whose CDF is equal to k, see Fig. 3a.
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shown that when few data only are available, the prediction of the probability density function can be 
completely wrong, and the lower 5% fractile is strongly overestimated. The prediction can be even more 
unstable if 3-5 results only are available, as usual in real applications. In the case of few data, a lack of 
knowledge is superimposed to the intrinsic material variability.
  
The second example refers to another real application, i.e. an experimental campaign conducted on a 20-
story high-rise building in Emilia –Romagna (see Fig. 2a). A general floor is also reported, with indication of 
the values of concrete strength (in daN/cm2) obtained from a non-destructive test campaign on reinforced 
concrete columns. The number of columns tested was very high for the lower 5 floors (see Figure 2b), and 
small (less than 20 percent) at the upper floors. 

  

 

Fig.2a: A 20-story high-rise building, and a general floor, with 
reported the strength values on reinforced concrete columns.

Fig.2b: Percentage of columns tested for each floor of the 
building.

         .

 

Fig.3a: 3st floor  – concrete strength: Example of extraction of the 
characteristic value Rck from a log-normal distributions obtained 
from Sample Cumulative distribution function (SCDF).

Fig.3b: Values of characteristic strength Rck for each floor, 
adopting a normal or a log-normal approximation..

  

Fig.4a: 1st floor (30 data) – concrete strength: Sample Cumulative Fig.4b: 17th floor (5 data) – concrete strength: Sample Cumulative 

“Normal” approximation

“Log- normal” approximation 

0.05

Rck
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distribution function (SCDF) and approximations considering 
Normal and Log-normal distributions (in daN/cm2).

distribution function (SCDF) and approximations considering 
Normal and Log-normal distributions (in daN/cm2).

For each floor, the classical procedure has been used to obtain the characteristic values of the concrete 
strength Rck, defined as the 5 percent fractile of the Cumulative Distribution Function (CDF), as shown in 
Figure 3a. The characteristic value is calculated with reference to both normal and log-normal distributions, 
the latter being closer to the actual strength distribution from experimental data.
It can be verified that the strength values are quite different for the different floors, probably due to the 
procedures and the environmental conditions for concrete casting during construction. 
But apart from this consideration, we want now focus on the reliability of the characteristic strength value 
calculated using this procedure, where a sample discrete data set is transformed into a smooth probability 
distribution function, irrespectively from the number of data considered. As an example, in Figs. 4a,b, the 
probability distributions obtained with the data available for the 1st floor (n. 30 data available) and the 17th 
floor (n. 5 data) are compared. It can be expected that, in the case of few data available (Fig. 4b), the 
estimate of the CDF, and consequently of the characteristic value, be not reliable, being strongly dependent 
on the single values of strength measured.
This example clearly shows the meanings of intrinsic variability of a mechanical variable (which, in the 
case of an infinite number of data can be represented by a precisely defined probability distribution), and 
lack of knowledge (when few data only are available to define it). In the second case, the estimate of the 
characteristic value, for instance, can be affected by a significant error, which must be estimated (see the 
following section).
Of course, an alternative could be to put all the results together, so obtaining a unique CDF with the whole 
set of results for the entire building (n. 220 strength data), see Fig. 7a. The result obtained, a probability 
distribution of concrete strength for the entire building, will be a very precise distribution, but probably not 
useful from the technical point of view, because it will not allow to detect where conditions of reduced safety 
for the building can be present. 
 

3. HOW TO MODEL THE UNCERTAINTY RELATED WITH THE NUMBER OF DATA 
In 1997, the writer proposed a method to take into account the uncertainties related with the number of 
available data when estimating probability distributions. It was based on the Kolmogorov-Smirnov estimate 
[1] of the confidence intervals for the Sample Cumulative Probability Distribution SCDF Fn(x) obtained using 
a set of n sample data. As shown in Fig. 5a, two (Lower and Upper) bounds can be defined, with a given 
level of confidence of the SCDF of being included in. The two bound can be written as:
LxFxdnnnγγ()max,()=−0 UxFxdnnnγγ()min(),=+1

(1)

where γ is the confidence level (between (0 and 1). For a data set sufficiently large (say n20), 
dnγ

  d /
n

, 
where d does not depend on n. Hence, the width of the confidence intervals is greater if few samples only 
are available, whereas it approaches zero for n going to infinity. 
In the proposed method [2], the sample cumulative distribution function SCDF Fn(x) is substituted by 
the continuous function F0(x), obtained by a parametric estimate from the sample CDF adopting a given 
distribution shape (e.g., normal or log-normal, as shown in Fig. 1a)). With this assumption, the stepped 
bounds Un

γ, Ln
γ reported in Fig. 5a are substituted2 by the smooth bounds U0

γ, L0
γ reported in Fig. 5b. Their  

amplitude is large if we require a large probability of the actual CDF to be included between these bounds.

The meaning of the confidence bounds is clearly shown in Fig. 6a: for a given value x of the variable, an 
interval [U0

γ(x), L0
γ(x)] is associated, with the probability of including the actual value of the Cumulative 

Distribution Function being equal to the confidence level γ. 
 

2 This step is not obvious, because it should require a series of theorems which are beyond the level of deepening which is possible in 
the present paper.
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Fig.5a: Bounds Un(x), Ln(x)  of the Sample Cumulative 
Distribution Function Fn(x) at the confidence level γ.

Fig.5b: The proposed model to treat distributions starting from few 
uncertain data: the Sample Cumulative Distribution Function Fn(x), the 
actual Cumulative Distribution Function F(x), the approximated F0(x) 
and the upper and lower bounds U0(x), L0(x) corresponding to the 
confidence level γ.
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Fig.6a: Probability distribution associated to the estimate 
bounds U0

γ(x), L0
γ(x) at the confidence level γ.

Fig.6b: How to extract information from the confidence bound of 
an uncertain probability distribution, according to the fuzzy number 
theory.

 
4. HOW TO EXTRACT USEFUL INFORMATION FROM INTERVAL ESTIMATES OF THE CDF 

ACCORDING TO THE FUZZY NUMBER THEORY 
The data contained in the representation of Fig. 6a can be used in the framework of (probabilistic and non 
probabilistic) theories, whose goal is to treat information affected by uncertainties. Between then, the most 
interesting ones are interval – based and fuzzy number – based models [3].    
Interval theory has been the first non probabilistic method to deal with uncertainties. According to this theory, 
for each variable an interval if defined by setting its lower and upper bounds, and interval analysis is used 
to perform calculations [4]. The main drawbacks of a reliability method based on interval analysis is that no 
distinction is made on more or less probable solutions. Moreover, it is very difficult to consistently define 
bounded interval for input physical variables without reference to a confidence level.
Fuzzy number theory [5] can be viewed as an extension of interval analysis, where intervals at different 
levels of confidence are defined. The main advantages of fuzzy analysis with respect to other methods 
are: a) it preserves the intrinsic random nature of most of physical variables even if it does not require the 
definition of their probability functions; b) values with high or low confidence can be distinguished, where 
the term confidence has necessarily a completely different meaning with respect to the probability density 
function defined in the framework of probability; c) other variables, such as estimates given by experts on 
the level of damage seen from an inspection analysis, and converted into a fuzzy number according to 
established protocols, can be included also, when stating the level of safety of a structure.
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The procedure outlined in the previous section allows to define a fuzzy number representing a variable 
whose probability distribution is uncertain because it has been obtained from a small set of data. With 
reference to Fig. 6b, where a CDF is reported with the bounds corresponding to a γ confidence level, we 
may select a value of probability, say k=0.05. The CDF intersects the k limit in one point, which is given a 
membership α=1. The same k limit can be used to identify an interval of values of x corresponding to the 
two bounds with confidence equal to γ, and membership equal to α=1-γ is given to it. By taking a number 
of values of the confidence γ, with this procedure a fuzzy number can be obtained, as shown in Fig. 7b, 
representing the characteristic value Xk of the variable. The width of the fuzzy variable is related with the lack 
of knowledge due to the limited number of data. Of course, if the number of available data increases, the 
fuzzy number tends to a crisp (single value) number, giving the characteristic value of the variable. 
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Fig.7a: Sample CDF using all the test results of the high-rise 
building, estimated CDF and 90% confidence limits. 

Fig.7b: Sample CDF using only the test results of the 4th floor, with 
90% confidence limits.  

 
For instance, the results obtained from the tests performed on the high-rise building are reported in Fig. 7a in 
the form of a Sample CDF (all the test results together), and are compared with the estimated CDF and the 
90% confidence limits defined as discussed in the previous section. The width of the bounds is very small, 

because a large amount of data is 
available (n. 220). It can be verified that 

the Sample CDF is everywhere included in 
the bounds indicated. 
In Fig. 7b, only the test results 

corresponding to the columns of the 
second floor have been considered (n. 

29 results), and of course the bounds are 
wider, and they are still able to include 

the whole Sample CDF. 
These results are then used to obtain 

the fuzzy sets corresponding to the 
characteristic value of the concrete 
strength (95% lower fractile), following 

the procedure described in Fig. 6b. The 
result is given in Fig. 8. The fuzzy 
numbers obtained using the strength 
values corresponding to test results for 

the different floors are depicted with thin line. The vertex values (corresponding to α=1) coincide with those 
given in Fig. 3b (for a log-normal distribution), but the representation in Fig. 8 contains more information, 
because for each floor the width of the fuzzy number indicates the confidence we may have on the estimate. 
For instance, if all the data are grouped together, the estimate on the characteristic value is much higher 
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 Fig.8: Fuzzy numbers corresponding to the lower 5% fractile of the 

probability distributions of strength values for the different floors. 
The analogous fuzzy number obtained considering all the test result 
is depicted with bold line.
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(due to the large amount of data), and the width of the fuzzy number is very small. 
 
 

5. UNCERTAINTIES IN DYNAMIC IDENTIFICATION PROBLEMS
Dynamic tests are often used to identify the behavior of real-scale structures such as bridges, buildings, 
etc [6]. The main objective is to identify their modal parameters (frequencies, vibration modes), in order to 
be able to compare if they are close to those expected through a numerical model of the structure. If the 
experimental results do not agree with predictions, the subsequent step is to identify if, for example, the 
difference can be due to a malfunctioning due to some damage occurred to the structure, and to predict 
where. In order to verify if the disagreement between test results and predictions is above a given level (so 
indicating the possibility of the occurrence of a structural damage), the uncertainties due to experimental test 
procedures must be taken into account.  
Typically, the identification process requires a numerical model of the structure be formulated and validated 
by dynamic experimental tests. In fact, a numerical model always requires some variables be defined by 
comparison with data, such as the mass of the structure (which is never exactly known), stiffnesses of some 
members or of the supports, etc. Identification typically follows a two-step procedure: 
1. Modal parameter identification - From the data recorded during the movement of the structure (by 

accelerometer measures for instance), the main dynamic characteristics of the structure are identified – 
first frequencies, modal shapes, damping factors, etc; 

2. Structural parameter identification - The unknown structural parameters (masses, stiffnesses) are 
obtained by imposing the best matching between experimental results obtained from modal parameter 
identification and numerical predictions. 

When a numerical model is finally identified, it can be used to verify, by subsequent dynamic tests, if the 
behavior changes, due to some damage3. 

Of course, the role of the uncertainties in the identification process can be very important, especially 
because both steps involve non linear problems, and then the presence of some noise in instrument 
recording on the initial dynamic data may spread in some cases, not allowing a correct identification of the 
dynamic behavior of the structure and recognize, for instance, the variation in the dynamic behavior due to 
the presence of damage. 
 

- Modal parameter identification
Modal parameter identification is a procedure to identify the dynamic properties of a vibrating structure. 
Parameter identification methods can be divided into two groups: frequency domain and time domain 
methods. The excitation of structure by dynamic forces is required in order to apply frequency domain 
methods. Forces may be imposed, for example, by means of a mechanical shaker [6]. On the contrary, 
time domain methods are more flexible since any kind of dynamic excitation can be used, such as noise 
excitations or forces induced by impact of weights on the structure. Among them, autoregressive models [7] 
and subspace methods [8, 9] are the most effective methods. Possibility of extracting modal parameters from 
recorded time signals, without the need of direct measurement of excitation force, is their main advantage. 
In the present study, the “Enhanced Frequency Domain Decomposition” (EFDD) is used [10]. It is an output-
only stochastic system identification method, based on the definition of the power spectral density matrix of 
the signal, and on the use of Singular Value Decomposition (SVD) in order to separate the contributions of 
the single modes. Once the mode contributions are uncoupled, a classical identification technique, such as 
Peak-Picking (PP) [6], can be used.
 

- Structural parameter identification
In a structural parameter identification problem, a numerical model of the structure is built, leaving unknown 
some parameters whose definition is uncertain. Then, an optimization problem is written, where the objective 
function to be minimized (called the cost function) is the distance between the modal parameters obtained 
from experimental tests and those given by the numerical model of the structure.

3 This is the simplest possible technique for damage detection, because it requires a full numerical model of the undamaged 
structure be known. Other more complex methods try to remove this limitation. 
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Different methods exist to minimize the cost function. Between them, genetic algorithms and evolution 
strategies are considered very promising numerical methods, because they allow to avoid convergence to 
local minima. In the present study, a parallel direct search method, the Differential evolution (DE) algorithm, 
is used [11, 12]. The algorithm has been recently modified by the writer, in order to improve the convergence 
speed in the presence of sufficiently smooth cost functions [13].
 

6. A SIMPLE EXAMPLE OF IDENTIFICATION PROCESS
A simple three-floor frame is considered. Elastic modulus of beams and columns is E = 30000 MPa. The 
frame is depicted in Figure 9a. Masses of slabs are added to beam masses. Therefore, an equivalent 
density for the beams is adopted to include floor mass contribution when performing structural analysis. Two 
different values of the mass, for the first floor and two upper floors, are considered.
The dynamic behavior of the structure is studied with a Finite Element model, with linear elastic beam 

elements for beams and columns. The 

first three natural frequencies are 1ω

=2.4357 Hz, 2ω =6.5079 Hz and 3ω = 
9.6881 Hz. This solution will be called 
the “reference exact solution” in the 
following, because it will be the target 
solution to find in the identification 
procedures.

 

-

Modal parameter identification
Consider the structure subject to a 
force acting at the upper level, and 
characterized by a white noise 
frequency distribution (fully random 
force distribution). The accelerations at 

the three floor are recorded during the excitation (see Fig. 10a upper, as an example). 
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Fig.10a: Recording of accelerations at the three floors, and 
Power Spectral Density (PSD) of the three signals (no error on 
measurements). 

Fig.10b: Recording of accelerations at the three floors, and Power 
Spectral Density of the three signals (80 percent additional error on 
measurements).  
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considered in numerical examples.

Fig.9b: The mechanical 
properties to be identified from 
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The “Enhanced Frequency Domain Decomposition” (EFDD) methods requires the construction of the Power 
Spectral Density (PSD) of the signals, whose peaks indicate the values of the natural frequencies of the 
structure. It can be verified that, even if the acting force was a white noise, the accelerations clearly showed 
the presence of a leading vibration frequency, and the PSDs of the signals clearly identified the vibration 
modes, with frequencies 2.4743, 6.5826 9.7806 Hz, and a maximum error equal to 1,6%. 
Fig. 10b (upper) shows the same acceleration recorded, but adding an error to the measurements, 
representing the possible error we may have due to the test instrumentation. The error is modeled as a 
white noise random distribution with standard deviation equal to 80 percent of the maximum acceleration. 
By comparing the two upper figures 10a and 10b, it can be verified that in the second case the error covers 
almost completely the recordings. The PSD distribution shows two clear peaks, indicating the 1st and 
3rd frequency, whereas the function at the 2nd peak is almost hidden by the noise. A significant error in 
identifying the 2nd frequency can then be expected in this case. The identified natural frequencies are 2.4743 
(1.6% error), 5.3221 (-22.3% error), 9.7806 (0.9% error), so confirming the prediction.
Also the errors in identification of the natural mode shapes, not reported here, follow an analogous trend.
 

- Structural parameter identification
The goal of the 2nd step when performing dynamic tests is to identify some mechanical properties of the 
structure which are not known. In the example considered, the elastic modulus E and the mass of the first 
floor m1 are considered as the two properties to be found. 
In order to test the robustness of the proposed algorithm, the optimization process has been performed using 
pseudo-experimental data from modal identification, obtained by adding some statistic scattering to the exact 
value. Pseudo-experimental data are obtained by multiplying exact values of frequencies and components 
of mode eigenvectors by uncorrelated coefficients, extracted from normal probability distributions with unit 
mean value and C.V.s equal to 5 percent for frequencies and 10 percent for eigenvector components.
When defining the cost function (squared difference between pseudo-experimental and numerical values of 
the parameters to be minimized), two different identification strategies are considered:
• Case B - first 3 frequencies and no eigenvectors; 
• Case C - first 2 frequencies and corresponding eigenvectors.
For each identification strategy (Cases B, C), 100 simulation tests are performed. Of course, for each set of 
data a different solution (i.e. a different set of identification parameters) minimizes the cost function. Hence, 
the obtained results must examined in a probabilistic view.
With both the cost functions (Case B and C), the mean values of the identified modulus and equivalent 
density are close to the exact values (E=30000 MPa, m1=26000 kg/m3). Nevertheless, the results in terms 
of dispersion with respect to the mean value are very different. The distributions of identified values of 
modulus and equivalent density are reported in Figures 11 a, b (upper). It is clearly shown that adopting also 
the mode shapes in the identification process (Case C), the results are strongly improved. Moreover, the 
identified values of modulus and equivalent density are almost uncorrelated (correlation coefficients equal 
to 0.13 for Case C). On the contrary, the correlation coefficient between identification results is very high 
(0.84) adopting 3 frequencies in the cost function (Case B). The different performance are clearly due to 
the features of objective functions adopted (see Figures 11 a, b lower): in particular, for Case B, the worst 
identification of the equivalent density is due to the presence of a direction with low sensitivity of the cost 
function and not to convergence problems of the adopted algorithm.
 

7. FUTURE RESEARCH
This research is just at its first steps, being the field of managing uncertainties in structural engineering 
problems, especially in identification problems from dynamic tests, a very important and actual research field. 
In the next months, the following activities will be performed:

- The criteria illustrated in section 2 will be extended to the case of identification from dynamical tests. 
The idea is to develop a criterion which should be able to separate the uncertainties related with the 
intrinsic variability of parameters to be identified with those related with the lack of knowledge due to 
insufficient experimental data.

- The mentioned criteria will be tested with reference to a real case, e.g., a series results on dynamical 
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tests on bridges, available in the University of Bologna or University of Columbia data archives.
- A series of new tests on a real structure in New York (the Manhattan Bridge) will be performed, 

starting March 2012. An as wide as possible experimental campaign will be done, the identification 
will be performed and the results will be taken as the reference solution. Then, a series of numerical 
simulations will be done, to verified if, with a well-defined test setup (but with a reduced number of 
records or instruments), it is possible to maximize the information available in the recorded data, as 
well as to estimate the uncertainties in the variables to be identified.

  

 

2 2.5 3 3.5 4

x 10
4

1.5

2

2.5

3

3.5

4

x 10
10

0.10 0.08
0.06

0.04
0.02

0.020
0.04

0.06 0.08 0.10

0.20

0.20

(Case B ) 

M
od

ul
us

 [1
0^

4 
M

Pa
]

Equivalent density  [10^4 kg/m^3]

1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2
4.4

1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60 3.80

Equivalent density [10^4 kg/m^3]

M
od

ul
us

 [1
0^

4 
M

Pa
]

Case B : 3 frequencies

 

2 2.5 3 3.5 4

x 10
4

1.5

2

2.5

3

3.5

4

x 10
10

0.02

0.04
0.06
0.08
0.10

0.02
0.040.06

0.08
0.10

(Case C ) 
M

od
ul

us
 [1

0^
4 

M
Pa

]

Equivalent density  [10^4 kg/m^3]

1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2
4.4

1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60 3.80

Equivalent density [10^4 kg/m^3]

M
od

ul
us

 [1
0^

4 
M

Pa
]

Case C : 2 frequencies
         and 2 mode shapes

Fig.11a: Case B identification strategy (3 frequencies), the cost 
function and the results in terms of identified variables (E and m1). 

Fig.11b:. Case C identification strategy (2 frequencies and 2 
mode shapes), the cost function and the results in terms of 
identified variables (E and m1).  
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