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Motor memories of objects 

Movement is the only way we have of interacting with the world. As such, the primary purpose of the 

human brain is to use sensory signals to determine future actions. Despite great progress in the field, 

movement neuroscience is still in its infancy. We have a detailed understanding of a narrow range of 

constrained tasks, such as single planar arm movements made under simple visual or mechanical 

perturbations (Figure 1). 

There have been clear benefits to this narrowly focused approach. By directing the efforts of many labs 

toward a few ‘model tasks’, researchers with different specializations can work together to investigate 

many relevant aspects (i.e., behavior, modeling, clinical, stimulation, imaging, electrophysiology). Over 

time, this can lead to an impressive level of understanding. For instance, a recent study by Sun and 

colleagues (2022) analyzed electrophysiological recordings from thousands of neurons in two monkeys’ 

primary motor and dorsal premotor cortices and successfully pinpointed changes in neural population 

activity that reflect key behavioral phenomena in this task (i.e., gradual learning, generalization and 

interference across learning contexts, and faster relearning). Such high-profile discoveries clearly show 

that we are making technical and theoretical progress toward understanding how the brain controls 

movement. It is unlikely that this could have been accomplished without a sustained focus on force-field 

adaptation in motor control research for the past 25+ years. 

However, to recognize the pitfalls of a narrowly focused approach, it is instructive to ask: why does a 

particular task become a model task? One important feature is accessibility: a model task must be simple 

enough for multiple laboratories to implement, or else it will not become widespread. In practice, this 

means that real-world complexity must be compressed into a few task variables or simply ignored. The 

second important feature is replicability: a model task should generate the same results every time or else 

the risk of unexpected results may become too great to justify the costs of running the study. Given the 

small sample sizes of motor learning experiments (N ≈ 12 for human studies and N ≈ 2 for monkey 

studies), this effectively means that a model task must reliably produce exactly the same results in each  
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Figure 1. ‘Model tasks’ in motor learning research. 
Neural preparation of movements is typically divided into two stages. First, various types of sensory 
information (e.g., target location, orientation, size; eye position, posture) are transformed into desired 
movement parameters (e.g., reach destination, shape of the grip). Next, a temporal sequence of muscle 
activations is prepared that is appropriate to produce the movement specified by the desired movement 
parameters. To study the first stage, researchers disrupt the normal relationship between visual information 
and required movement parameters. To study the second stage, researchers use haptic interfaces that 
produce novel forces on the hand during the movement. 
(Left) Visuomotor perturbations. In the early 1900s, Hermann von Helmholtz and George Stratton pioneered 
the use of prism lenses to perturb the visual input by shifting or inverting the projection of light on the retina. 
Prism adaptation was popular throughout the late 20th century, with major contributions from Richard Held, 
Robert Welch, and others. Today, the use of lenses has largely been replaced by the use of computer 
displays, where the physical movement of the hand on digitizing trackpad is inherently dissociated from the 
visual movement of the on-screen cursor. With this technique, researchers have focused on two closely 
related model tasks: visuomotor rotations, depicted here, where the cursor moves in a different direction 
than the hand, and visuomotor gains, where the speed of the cursor differs from the speed of the hand. 
(Right) Force-field perturbations. To move the hand along a desired trajectory, the motor system must 
produce an appropriate sequence of muscle activations (a ‘movement plan’). The trajectory that results 
from a particular movement plan is determined by the laws of physics (the ‘system dynamics’), and depends 
on various characteristics of the arm (e.g., mass distribution, arm segment lengths, muscle fatigue). The 
process of generating a movement plan can therefore be understood as computing the inverse of this 
physical transformation, i.e., going from a desired trajectory to an appropriate sequence of muscle 
activations. One early approach to perturbing the dynamics of reaching movements involved using rotating 
rooms to induce Coriolis forces (Lackner & Dizio, 1992). Researchers soon turned to programmable haptic 
interfaces (‘robot handles’; e.g., vBOT) to produce forces on the hand. Although many types of force field 
can be created with this apparatus, experiments on motor learning have focused on adaptation to curl fields. 
In a curl field, the instantaneous force exerted on the hand is perpendicular to the direction of motion and 
proportional to the velocity. The bottom panel shows typical movement trajectory data during adaptation to 
a counterclockwise (blue) or clockwise (red) force field. At left, normal movements with no force field; center 
gray region, perturbed movements initially show large deviations but become straighter over time; at right, 
when the field is turned off, movements show opposing deviations, indicating that the movement plan has 
adapted to anticipate the altered dynamics. 
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individual, discouraging the study of phenomena marked by individual differences that cannot (yet) be 

predicted. Again, from the perspective of accelerating progress at multiple levels (i.e., behavior, 

algorithm, neural basis), a shared focus on tasks that are highly accessible and consistently replicable 

certainly makes sense; no one would argue that this approach should be abandoned.  

However, it is worth considering that such an intense focus on specific results from specific tasks can lead 

to an overly restrictive definition of the field itself. That is, an initially broad definition of motor learning 

has been followed by a great accumulation of data about motor learning in visuomotor rotation and force 

field tasks, leading to models (often pitched as ‘integrative theories’) that are supposed to be general, but 

in some cases do little more than redescribe the most reliable observations from the model tasks in formal, 

mathematical terms. For example, theoretical discussions at motor learning conferences are frequently 

dominated by two such ‘theories’: associative models of motor memory that implement the principle of 

gradual, context-specific learning (Figure 2a), and dual-rate models of motor learning that implement the 

principle of separate implicit and explicit processes (Figure 2b). Without greater task diversity, it is 

impossible to know whether these principles are truly general, and in what ways they contribute across 

the various tasks included in the vast human sensorimotor repertoire. This not only limits our ability to 

translate research findings into the real world, for example in rehabilitation clinics or athletic training, but 

also increases the likelihood that findings that conflict with these principles will be skeptically regarded 

as spurious (“the experiment was poorly conducted”), idiosyncratic (“the findings pertain only to a 

limited context”), or non-motor (“possibly interesting, but not of central importance”). 

The long-term goal of my research is to develop a new conceptual framework of motor learning that 

focuses on skillful interaction with physical objects. Object manipulation is an essential ability in daily 

life and can be devastatingly disrupted by illness or injury, making it an impactful topic in its own right. 

Yet, from a broader perspective, a focus on object manipulation may act as a counterbalance to the 

‘narrowing’ tendency described above. This is because it naturally recruits many different types of 

cognitive function while retaining a high degree of ecological validity. Just scratching the surface, it is 
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easy to see the involvement of neural systems for multisensory perception, learning and memory, 

reasoning, and in some cases even social cognition and communication. This breadth makes object 

manipulation a great starting point for developing new approaches. In addition to potentially changing the 

way we think about motor control, it also creates an opportunity for motor control research to influence 

Figure 2. Two dominant ideas in motor learning 
(Left) A highly simplified diagram of the ‘associative motor memory’ model. This model posits that when 
learning a novel motor skill, sensory input information is encoded by populations of sensory ‘neurons’ 
(black circles) corresponding to different sensory dimensions (e.g., target color, body posture, target 
location). Each neuron has a preferred value along the dimension encoded by its population, meaning it 
responds most strongly to that value. Here, the activity of each neuron is indicated by the thickness of its 
outline. For instance, in the neural population that encodes the context dimension Location, the center 
neuron is depicted as responding vigorously (thick red outline) to indicate that its preferred target location 
is ‘straight ahead’, given that the reach target (toy banana) is located straight ahead. This activation 
specifies one aspect of the sensory context of the movement. The neural activations across all of the 
input populations thus encode a detailed specification of the movement context. As a result, motor 
memories can be encoded in the connection weights between specific subsets of these neurons, and the 
downstream neural population that encodes movement parameters (the black box labeled Motor Output). 
When the movement is unsuccessful, error feedback can be used to update this context-specific motor 
memory by changing the connection weights.  
(Right) Operationalizing the use of explicit strategies in a motor learning task. When participants are 
learning a visuomotor rotation (see Figure 1a), the experimenter places a ring of numbers around the 
starting position of the hand. In a visuomotor rotation task, an explicit strategy can be defined as 
deliberately choosing not to move the hand as if you were trying to touch the target, but instead as if you 
were reaching to a different target. Participants are informed of this strategy and asked to specify where 
they are aiming prior to each movement by indicating a number along the ring. The observed reaching 
directions (purple curve) demonstrate an additive combination of the explicitly reported aiming directions 
(blue curve) and the implicit contribution of motor memory (red curve), which appears to gradually and 
automatically learn the kinematics of the task based on error feedback. 
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theories of object memory, which currently focus on perception and cognition but not action. Though 

object manipulation has long been an important subfield of motor control research (Westling & 

Johansson, 1984; Flanagan & Johansson, 2009), research up to this point has primarily investigated the 

fine mechanical details of grip-force control (e.g., reflex responses to object-slippage events, predicting 

the timing of liftoff and contact events) As a result, it has served only to complement, not to challenge, 

the ‘mainstream’ findings from visuomotor rotation and force field adaptation.  

Criticisms of the categorical encoding hypothesis of Cesanek et al. (2021) 

The perspective developed above, stressing the need for greater task diversity, is reflected in my recent 

work examining the representation of objects’ mechanical properties in motor memory (Cesanek et al., 

2021). Briefly, in that study, I tested the novel hypothesis that motor memories of objects are organized 

categorically, in terms of ‘families’, based on covariation in their visual and mechanical properties. 

Participants in this study first repeatedly lifted a set of training objects that covaried in size and weight. 

After they learned the weights of these objects, I introduced an ‘outlier’ object that appeared similar to the 

training objects, but was much heavier than expected. Remarkably, participants persistently failed to learn 

the weight of this object, instead using the expected weight based on the density of the other four objects 

when producing lift forces. This clearly demonstrates that the four training objects were learned as a 

family, and the outlier was also encoded as a family member. However, when the outlier was sufficiently 

deviant—and thus exceeded a hypothesized category boundary—it was ‘kicked out’ of the family and 

learned as an individual. A variety of additional observations reinforced and extended this interpretation. 

This work provides the first empirical evidence that categorization plays a key role in organizing the 

memories underlying skilled action. 

In the published article, Cesanek et al. (2021) argue that the observed categorical effect cannot be 

accounted for by current theories of motor learning. There is substantial discussion around this point in 

the article, but systematic evaluation of this claim remained incomplete. Thus, one of the aims of my 

present research has been to review relevant literature (1) to confirm the extent to which those findings 
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truly demand revision of current thinking about motor learning, and (2) to motivate new experiments that 

will help us understand the underlying issues. In general, there have been two aspects to this reappraisal, 

discussed in sequence below. 

The associative encoding assumption shared by current models of motor memory 

The first aspect involves pinpointing why current models of motor memory are inconsistent with 

categorical encodings. Ultimately, this rests on a shared, fundamental assumption of all current models of 

motor memory. This is the assumption that memories are indexed (i.e., separately formed, accessed, and 

updated) by context-specific sensory cues available during movement planning and/or execution. This 

assumption is found not only in purely associative models, such as radial basis function networks (e.g., 

Thoroughman & Shadmehr, 2000), but also in models explicitly designed to simplify the learning of 

multiple behaviors by clustering similar movements together under one motor memory (e.g., MOSAIC; 

Wolpert & Kawato, 1997). It should be noted that both of these model classes can, under the right 

circumstances, produce the same motor output for different sensory inputs. Although this may be 

considered a primitive form of categorization, it may be helpful to distinguish this mere lack of 

sensitivity, which we might instead call ‘clustering’, from the more sophisticated function of 

‘categorization.’ In particular, the nature of a categorical encoding is that it avoids forming associations 

between specific sensory/motor input/output pairs. Instead, a categorical encoding compactly summarizes 

the relationship between many potential input-output pairs. For instance, the concept of density is a 

categorical encoding of a set of objects that can vary in size. 

One notable observation from this review is that the empirical support for the assumption of context-

specific sensory-motor associations seems to rest on one specific finding. This finding is the bell-shaped 

profile of the behavioral generalization function that arises in reaching tasks involving multiple, radially 

arranged targets. The generalization function measures the degree to which learning in one context (i.e., a 

reach to one target) subsequently affects behavior in other contexts with varying degrees of similarity 

(reaches to other targets, ranging from only few degrees away to a full 180 degrees away). The bell-
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shaped profile of the generalization function in reach adaptation tasks has been one of the most robust 

results of motor learning research. Yet it has only been observed in one kind of generalization analysis, 

looking at just one specific contextual cue: the planned movement direction of the hand in center-out 

reaching tasks. Meanwhile, little attention has been paid to the few conflicting reports demonstrating that 

generalization over reach direction can show a global, rotational structure (Vetter et al., 1999; Turnham et 

al., 2011). 

In contrast, other types of contextual sensory cues—such as the visual features of manipulable objects 

(size, surface texture, 3D shape)—have never been experimentally manipulated in a way that could falsify 

the associative account. This is not to say that other cues have never been examined. On the contrary, a 

wide variety of cues have been employed in numerous experiments investigating the formation of 

multiple context-dependent motor memories (Cothros et al., 2008; Howard et al., 2013; Ayala et al., 

2015; Heald et al., 2018; Schween et al., 2018). However, the design of these experiments always 

involves presenting two opposing perturbations (i.e., CW and CCW curl fields, or CW and CCW 

visuomotor rotations), with the perturbation direction cued by one of two values of the context cue (e.g., 

red cursor vs. green cursor). Such experiments have only two possible outcomes: either they reveal some 

capacity for context-sensitive learning of both perturbations, or they do not. Importantly, neither outcome 

sheds any light on the question of whether abstract representational formats, such as categories, are 

involved in the process of learning. 

Defining the role of explicit memory 

The second, more complicated aspect of the reappraisal of Cesanek et al. (2021) relates to the possibility 

that the categorical effect could arise from declarative memory (i.e., systems that store factual information 

for conscious recall) rather than motor memory (i.e., systems that store information relevant to generating 

a motor plan to perform an action). The basis of this criticism comes from another influential trend in 

current thinking about motor learning, which focuses on the potential role of explicit strategies (Mazzoni 

& Krakauer, 2006; Taylor et al., 2014). The idea of adopting an explicit strategy when performing a 
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motor task is rather intuitive (e.g., “try to time it such that…” or “make sure you grip it like this…”). Yet 

it has been rather elusive and difficult to isolate in motor learning experiments. Even in a visuomotor 

rotation task, where the explicit strategy is quite obvious from the experimenter’s point of view, 

participants who are not instructed in any way will describe all sorts of idiosyncratic strategies when 

asked in a post-experiment debriefing. However, Mazzoni and Krakauer (2006) found that if participants 

were given the appropriate strategy at the beginning of the task—“Since the cursor is rotated with respect 

to your hand movement, move your hand as if you were trying to hit a target located over _here_”)—all 

participants would readily adopt this strategy. Surprisingly, in the following trials their performance 

actually became worse! They kept trying to aim at the instructed location, but actual movements drifted 

even farther in that direction, overcorrecting for the visuomotor rotation. 

This was taken as evidence that the observed learning in a reach adaptation experiment can be 

decomposed into two additive components. First, an implicit component that results from automatic, 

error-driven updating of motor memory. This component is typically regarded as bona fide motor 

learning, as it appears to be based on sensory-prediction errors generated by predictive models in the 

cerebellum that compare actual and expected sensory feedback (Taylor et al., 2010). In parallel, there is 

an explicit component, which refers to the participant’s conscious decision to apply a particular strategy. 

This conforms with a longstanding distinction in memory research between implicit and explicit memory 

systems, and questions a traditional model of motor skill acquisition (Fitts, 1954) which asserted a three-

phase process, beginning with an often-clumsy ‘cognitive phase’ in which an explicit understanding of 

the task procedure is formed, following by an ‘associative phase’ in which repeated practice leads to 

performance refinements, coalescing in the ‘autonomous phase’ in which explicit processing no longer 

contributes to the performance of the task. The recent results on the role of explicit processing in 

visuomotor rotation tasks suggest that, even with extensive practice, explicit processing continues to play 

a significant role in overtrained participants’ performance.  
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Figure 2b depicts the labeled-ring technique that was introduced to implicit and explicit processes in 

visuomotor rotation tasks. While this approach works brilliantly for visuomotor rotations, there are a 

number of conceptual difficulties that prevent a task-general definition of the explicit component. Notice, 

for instance, that only in the labeled-ring paradigm is it possible to state the implicit and explicit 

components in the same units. In other settings, the explicit component is notoriously difficult to define, 

and questions about how it interacts with implicit learning do not have simple answers. For example, the 

labeled-ring paradigm has also been used in curl field adaptation. Here, participants are similarly willing 

to describe an explicit strategy that involves pushing the handle in a different direction, not straight at the 

target (McDougle et al., 2015). However, the conclusions are not as tidy as in the visuomotor rotation 

task. In particular, a participant’s ability to describe the forces they have learned to generate does not 

necessarily imply that the explicit memories supporting this description are contributing to the 

movements they are performing. Thus, unlike in the visuomotor rotation task, the possibility emerges that 

explicit and implicit memories formed during a motor task can be redundant rather than additive. In 

recent work, I have aimed to clarify the role of explicit memory in the categorical encoding effects 

observed in the experiments reported in Cesanek et al. (2021). In a variety of web-based experiments 

conducted during the pandemic, we have recently gained a more detailed understanding of the categorical 

effect, particularly its modulation by sensory and structural factors. In the hope that in-person laboratory 

experiments with human subjects can soon resume in a productive way, I have also planned one set of 

laboratory experiments that aim to resolve outstanding concerns.  
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